978 research outputs found

    Controlling surface statistical properties using bias voltage: Atomic force microscopy and stochastic analysis

    Full text link
    The effect of bias voltages on the statistical properties of rough surfaces has been studied using atomic force microscopy technique and its stochastic analysis. We have characterized the complexity of the height fluctuation of a rough surface by the stochastic parameters such as roughness exponent, level crossing, and drift and diffusion coefficients as a function of the applied bias voltage. It is shown that these statistical as well as microstructural parameters can also explain the macroscopic property of a surface. Furthermore, the tip convolution effect on the stochastic parameters has been examined.Comment: 8 pages, 11 figures

    Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots

    Get PDF
    Cataloged from PDF version of article.We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green-and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs. (C) 2013 AIP Publishing LLC

    MMS Multi-Point Analysis of FTE Evolution: Physical Characteristics and Dynamics

    Get PDF
    Previous studies have indicated that flux transfer events (FTEs) grow as they convect away from the reconnection site along the magnetopause. This increase in FTE diameter may occur via adiabatic expansion in response to decreasing external pressure away from the subsolar region or due to a continuous supply of magnetic flux and plasma to the FTEs’ outer layers by magnetic reconnection. Here we investigate an ensemble of 55 FTEs at the subsolar magnetopause using Magnetospheric Multiscale (MMS) multi-point measurements. The FTEs are initially modeled as quasi-force-free flux ropes in order to infer their geometry and the spacecraft trajectory relative to their central axis. The MMS observations reveal a radially-inward net force at the outer layers of FTEs which can accelerate plasmas and fields toward the FTE’s core region. Inside the FTEs, near the central axis, plasma density is found to decrease as the axial net force increases. It is interpreted that the axial net force accelerates plasmas along the axis in the region of compressing field lines. Statistical analysis of the MMS observations of the 55 FTEs indicates that plasma pressure, Pth, decreases with increasing FTE diameter, λ, as Pth,obsv - λ-0.24. Assuming that all 55 FTEs started out with similar diameters, this rate of plasma pressure decrease with increasing FTE diameter is at least an order of magnitude slower than the theoretical rate for adiabatic expansion (i.e., Pth,adiab. - λ-3.3), suggesting the presence of efficient plasma heating mechanisms, such as magnetic reconnection, to facilitate FTE growth.Key PointsThe forces inside FTEs observed by MMS suggest plasma acceleration toward and along the FTE’s central axis causing plasma to escapeThe roles of adiabatic expansion and reconnection in FTE growth are explored using MMS observationsThe observed sub-adiabatic decrease of plasma pressure as FTE size increases requires plasma heating mechanisms such as reconnectionPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151362/1/jgra55065_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151362/2/jgra55065.pd

    A Model for Leveraging the Tools of Personal knowledge Management 2.0 as the Next Generation of E-Learning

    Get PDF
    Assictant: In recent years a fundamental revolution has been seen in the education. This transformation is not only in the tools and methods, but in the concept and approach of education. One of these developments is in the transferring from teacher-centered methods into students-centered methods. In this transformation, personal knowledge management can be recognized as the coin of e-learning. Concurrent with this evolution in the methods, tools of teaching have been changed fundamentally from traditional teaching tools to e-learning and e-learning 2.0 (e-learning with Web 2.0 tools). This novel method has been studied in this research. At the first, personal knowledge management processes, Web 2.0 tools have been recognized and then the overlaps with the training have been studied. The suggested model has been composed of  these three areas, validated by the Delphi panel, and at last with chi-square test a survey has been done. 300 users of knowledge workers of online knowledge communities have been recognized and categorized; and knowledge workers 2.0 have been selected. In recognizing processes and tools of personal knowledge management, which can be used in e-learning, these knowledge workers answer the questions. On the other hand, 11 experts on Knowledge management (authors of ISI articles) in three rounds have been contributed in Delphi panel. The result of this study has been formed as a model for leveraging personal knowledge management tools in learning. This model includes the personal knowledge management 2.0 processes which can be used in learning. In addition, the best tools for each process have been identified in this model

    Junctionless 6T SRAM cell

    Get PDF

    Comparative Analysis of the Vlasiator Simulations and MMS Observations of Multiple X-Line Reconnection and Flux Transfer Events

    Get PDF
    The Vlasiator hybrid-Vlasov code was developed to investigate global magnetospheric dynamics at ion-kinetic scales. Here we focus on the role of magnetic reconnection in the formation and evolution of magnetic islands at the low-latitude magnetopause, under southward interplanetary magnetic field conditions. The simulation results indicate that (1) the magnetic reconnection ion kinetics, including the Earthward pointing Larmor electric field on the magnetospheric side of an X-point and anisotropic ion distributions, are well-captured by Vlasiator, thus enabling the study of reconnection-driven magnetic island evolution processes, (2) magnetic islands evolve due to continuous reconnection at adjacent X-points, "coalescence" which refers to the merging of neighboring islands to create a larger island, "erosion" during which an island loses magnetic flux due to reconnection, and "division" which involves the splitting of an island into smaller islands, and (3) continuous reconnection at adjacent X-points is the dominant source of magnetic flux and plasma to the outer layers of magnetic islands resulting in cross-sectional growth rates up to + 0.3 R-E(2)/min. The simulation results are compared to the Magnetospheric Multiscale (MMS) measurements of a chain of ion-scale flux transfer events (FTEs) sandwiched between two dominant X-lines. The MMS measurements similarly reveal (1) anisotropic ion populations and (2) normalized reconnection rate similar to 0.18, in agreement with theory and the Vlasiator predictions. Based on the simulation results and the MMS measurements, it is estimated that the observed ion-scale FTEs may grow Earth-sized within similar to 10 min, which is comparable to the average transport time for FTEs formed in the subsolar region to the high-latitude magnetopause. Future simulations shall revisit reconnection-driven island evolution processes with improved spatial resolutions.Peer reviewe

    The Energy Loss of a Heavy Quark Moving in a Viscous Fluid

    Full text link
    To study the rate of energy and momentum loss of a heavy quark in QGP, specifically in the hydrodynamic regime, we use fluid/gravity duality and construct a perturbative procedure to find the string solution in gravity side. We show that by this construction the drag force exerted on the quark can be computed perturbatively, order by order in a boundary derivative expansion. At ideal order, our result is just the drag force exerted on a moving quark in thermal plasma with thermodynamics variables promoted to become local functions of space and time. Furthermore, we apply this procedure to a transverse quark in Bjorken flow and compute the first-derivative corrections, namely the viscous corrections, to the drag force.Comment: 33 pages, 6 figures, references added v5: Some correction

    Branes at Quantum Criticality

    Full text link
    In this paper we propose new non-relativistic p+1 dimensional theory. This theory is defined in such a way that the potential term obeys the principle of detailed balance where the generating action corresponds to p-brane action. This condition ensures that the norm of the vacuum wave functional of p+1 dimensional theory is equal to the partition function of p-brane theory.Comment: 17 pages, references added, typos fixed,v2. minor change
    corecore